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The electro-oxidation of 2-mercaptoethanol by poly-Co-tetraaminophthalocyanine (p-Co- 
TAPc) and poly-metal-free-tetraaminophthalocyanine @H2TAPc), absorbed on electrode 
surfaces has been investigated by UV-visible spectroelectrochemistry and electrochemical 
techniques. In the case of p-CoTAPc, an irreversible oxidation wave is obtained by cyclic 
voltammetry, whereas p-H2PcTA practically does not show activity. The foot of the oxidation, 
as the open circuit potential measurements indicate that the responsible redox couple is 
Co(II)/Co(I). The p-CoTAPc modified-electrode loses its activity after a fust potential cycle. 
W-visible spectroelectrochemical measurements show a charge transfer band (metal to ligand) 
for the gCoTAPc between Q and Soret bands when negative potentials are applied and Co(I) is 
obtained. The presence of 2-mercaptoethanol promotes the appearance of the charge transfer 
band at open circuit potential and retain this band even at potentials as positive as +0.2V 
where normally the Co center is in +2 oxidation state. The permanence of a stable charge 
transfer band indicates the formation of a stable charge-transfer adduct between Co(1) and the 
thiol. This adduct would be responsible for the loss of catalytic activity for p-CoTApc after the 
first oxidation cycle. 

Keywords: 2-Mercaptoethanol; Cobalt phthalocyanine; Charge transfer adduct 

Cobalt-phthalocyanine-modified electrodes have been used as electrocata- 
lysts in many redox reactions and the electro-oxidation of thiols has been 
extensively studied [l - 31. Previous electropolymerization of a complex on 
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the surface electrode could modify its catalytic characteristics and stability, 
and even the reaction mechanism by which the catalysis takes place [4,5]. 
In this work, the electro-oxidation of 2-mercaptoethanol by poly-Co- 
tetraaminophthalocyanine @-CoTAPc) and poly-metal-free-tetraamino- 
phthalocyanine (p-H2TAPc), adsorbed on electrode surfaces has been 
investigated by UV-visible spectroelectrochemical and electrochemical 
techniques. 

The electropolymerization of both polymers on glassy carbon or glass/ 
Sn02 : F electrodes was performed by continuously cycling the potential 
between -0.4 and + 0.9V (vs. Ag/AgCl) at lOOmVs-', for 100 cycles. The 
electrolyte consisted of a 0.1 M tetrabutylammonium perchlorate (TBAP)/ 
DMF deaerated-solution containing 1 mM of the monomer. The resulting 
polymers are stable in basic solution (pH 1 8) and show the profile of 
Figure 1. Figure 2 shows the square wave voltammograms of p-CoTAPc 
and p-HzTAPc/glassy carbon electrodes, at pH 10. Comparisons of 
voltammograms of Figure 2 with respect to signals observed in Figure 1 
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FIGURE la Voltammetric response of a 100 cycles p-CoTAPc/glassy carbon electrode in N2- 
deareated aqueous solution at pH 10. Electrolyte: NaHC03/Na2C03 mixed 0.1 M solutions. 
Scan rate: O.lVs-'. 
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E/ V vs Ag/AgCl 
FIGURE l b  Voltammetric response. of a 100 cycles p-H2TAPc/glassy carbon electrode in N2- 
deareated aqueous solution at pH 10. Electrolyte: NaHCOS/NazC03 mixed 0.1 M solutions. 
Scan rate: 0.1 vs-'. 

allow us to assign the obtained redox couples. Thus, redox couple IIa/IIc 
can be assigned to the redox process of the metal Co~I)/Co(I) and Ia/Ic and 
IIIa/IIIc as processes of the ring [5]. 

In Table I the potentials of the redox couples and their assignment as 
metal or ring processes are listed. 

Figure 2 shows that the IIa/IIc process would have a component of the 
ring with predominance of the contribution of the metal in the case of p- 
CoTAPc. It is based on signals appearing between -0.2 and -0.5V7 where 
the response of the metal is very noticeable (see Fig. 2a), but also a series of 
signals of small intensity appear, corresponding to the ligand (see Fig. 2b). 
On the other hand, the voltammetric response of both polymers grown on 
SnO:!: F or glassy carbon electrodes is similar. 

Figure 3 shows the voltammograms of both polymers in the presence 
of 3mM 2-mercaptoethanol, at pH 10. An irreversible oxidation wave 
is observed for p-CoTAPc, but practically no catalysis is obtained for 
p-H2TAPc. p-CoTAPc catalyses the oxidation of this thiol, although it loses 
its activity after the first potential cycle. The foot of the oxidation wave is 
near - 0 S V  which could indicate that the redox couple responsible in the 
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FIGURE 2a Square wave voltammogram of a 100 cycles p-CoTAPc/glassy carbon electrode 
in Nz-deareated aqueous solution at pH 10. Potential scan: -0.9 up to + 0.2V vs. Ag/AgCl. 
Potential step: 4mV. Square wave amplitude: 25mV. Frequency: 20Hz. Scan rate: 0.1 Vs-' .  
Electrolyte: NaHC03/Na2C03 mixed 0.1 M solutions. 

catalysis is Co(II)/Co(I). This result agrees with data obtained from open 
circuit potentials (OCP) listed in Table 11. OCP was measured for both 
polymers/Sn02 : F electrodes, in deaerated pH 10 solution, with and without 
2-mercaptoethanol. OCP drastically changes when 2-mercaptoethanol is 
present in the solution. The difference in OPC indicates that an electronic 
transference from the thiol toward the polymers occurs. 

However, the transferred electronic density is higher for p-CoTAPc than 
for p-H2TAPc. In the case of p-CoTAPc, the charge would be received by 
the Co (11) which becomes Co (I) because the redox couple Co(II)/Co(I) is 
near the potential of the OCP measurement in the presence of the thiol. In 
the case of p-H2TAPc, the electronic receptor would be a redox couple or 
couples near -0.4V (redox signals appearing between -0.2 and -0.5V). 
OCP values do not change with the thickness of the films because both 
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FIGURE 2b Square wave voltammogram of a 100 cycles pHzTAPc/glassy carbon electrode 
in N2-deareated aqueous solution at pH 10. Potential scan: -0.9 up to +0.2V vs. Ag/AgCl. 
Potential step: 4mV. Square wave amplitude: 25mV. Frequency: 20Hz. Scan rate: 0.1 Vs-'. 
Electrolyte: NaHC03/Na2C03 mixed 0.1 M solutions. 

TABLE I Assignment of redox couples of pCoTAPc and p-H2TAPc at pH 10 

Epa/Epc/ V vs. AglAgCI Assignment 

pCoTAPc 

~ H ~ T A P c  

- 0.7/- 0.6 
- 0.3/- 0.4 

- 0.1, + 0.2/+0.1 
- 0.7/- 0.6 
o.o/- 0.1 v 

Ia/Ic = Ligand 
IIa/IIc = Co(II)/Co(I) 

IIIa/IIIc = Ligand 
Ia/Ic = Ligand 

IIIa/IIIc = Ligand 

polymers present the same values independent of the number of cycles 
during the polymerization (from 20 up to 100 cycles). 

W-visible spectra of SnOz : F/polymers were recorded under potentio- 
static conditions and are shown in Figures 4 and 5. Figure 4 shows the 
spectrum of p-CoTAPc at OCP and the spectra corresponding to negative 
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FIGURE 3 Voltammetric first cycle response of both polymers/glassy carbon electrodes in the 
presence of 3mM of 2-mercaptoethanol, at pH 10. Scan rate: 0.1Vs-'. Dashed line: p- 
CoTAPc/modified electrode. Continuous line: p-HzTAPc/modified electrode. 

TABLE I1 Open circuit potentials (V vs. Ag/AgCl) for p-CoTAPc and pHzTAPc/SnOzF- 
electrodes, both with and without 2-mercaptoethanol in the electrolyte (pH 10) 

OCPI V. AalAaCI Without mercaptoethanol With mercaptoethanol AECA, V 

P-H~TAPc -0.130 - 0.380 0.250 
p-COTAPC -0.012 - 0.487 0.475 

potentials, with respect to OCP. They show the Soret and Q band 
characteristics [6] for this kind of complex. Both bands are due to x-T* 
(alu-eg and azu-eB> allowed transitions. Figure 4 also shows a charge 
transfer band, (CTB) with a maximum at 463nm [7] and two isosbestic 
points (397 and 454 nm) corresponding to the equilibrium [7,8]. Co(1)- 
L c) Co(11)-L-'. This equilibrium is due to negative potentials applied 
because Co(I1) is reduced to Co(1) and Co(1) promotes the metal-ligand 
CTB. When positive potentials with respect to OCP are applied, the 
spectrum of p-CoTAPc does not change. Figure 5 shows the p-H2TAPc 
spectrum at OCP. The application of positive or negative potentials 
with respect to OCP does not modify this spectrum. Figure 6 shows, for 
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I I I 1 I 1 

400 600 800 
A /nm 

FIGURE 4 UV-visible spectra for the p-CoTAPc/SnOz : F electrode in aqueous solution @H 
10) under potentiostatic conditions. The response at OCP is showed with a bold line. Arrows 
indicate the sense of the change in the spectra when -0.4V, -0.52V, -0.56V and -0.6V 
versus Ag/AgCl are applied. 

600 800 
h/nm 

FIGURE 5 UV-visible spectra for the p-HzTAPc/SnOz : F electrode in aqueous solution (PH 
10) under potentiostatic conditions. The response at OCP coincides with the response under the 
application of negative or positive potentials respect to OCP. 
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h/nm 
FIGURE 6 W-visible spectra for the pCoTAPc/Sn02 : F electrode in aqueous solution (PH 
10) at the presence of 3mM of 2-mercaptoethanol, under potentiostatic conditions. The 
response at OCP is showed with a bold line. Arrows indicate the sense of the change in the 
spectra when -0.52V, -0.56V and -0.6V versus Ag/AgCI are applied. 

FIGURE 7 UV-visible spectra for the pCoTAPc/SnOz : F electrode in aqueous solution @H 
10) at the presence of 3mM of 2-mercaptoethanol, under potentiostatic conditions. The 
response at OCP is showed with a bold line. An almost unique signal is obtained when positive 
potentials with respect to OCP are applied (- 0.36 V, - 0.2 V, 0.0 V and + 0.2 V versus Ag/AgCl) 
that keeps the charge transfer band. 
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A STABLE CHARGE-TRANSFER ADDUCT 191 

p-CoTAPc, that the presence of 2-mercaptoethanol promotes the ap- 
pearance of the CTB at OCP. This fact proves that the electronic recep- 
tor is Co(I1) which becomes Co(1). In the case of p-H2TAPc, the thiol 
does not promote change at OCP, or when positive or negative potentials 
are applied. The spectrum of p-CoTAPc, when 2-mercaptoethanol is present 
and negative potentials are applied shows a slightly increase in the intensity 
of the CTB and a small decrease in the intensity of the Q band (see Fig. 6). 
When 2-mercaptoethanol is present and positive potentials are applied, the 
spectra of p-CoTAPc retain the CTB even at potentials as positive as 
+0.2 V where normally the Co center is in the +2 oxidation state (see Fig. 7). 
The permanence of the CTB at positive potentials would indicate the 
formation of a stable charge-transfer adduct between Co(1) and the thiol. 
This adduct would be responsible for the loss of catalytic activity of 
p-CoTAPc after the first oxidation cycle. 
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